構造コラム第21回「振動解析への誘い」

構造設計は、数多くの「仮定」のもとに成り立っています。とりわけ地震の力と建物の挙動は、仮定の上に仮定が重なるようにして計算しています。低中層の建物は、過去の地震被害や多くの実験などの実績があり、現行の計算方法が「あながち間違いではない」ということは経験的に分かっているのです。

一方、超高層建築物(高さ60m超)は日本で建設されてから日が浅く、地震に対して建物がどう動くか、どのような被害が出るかということは、実際のところ「よくわかっていない」というのが実状です。そこで、より現実に近い状態で精密なシミュレーションを行うため、超高層建築物には振動解析(時刻歴応答解析)という計算が義務付けられています。(ちなみに振動解析は、ラケットや家電、自動車や航空機にも行われています。)

しかしながら、超高層の設計に携わったことのある構造設計者はほんのひと握りです。つまり大多数の構造設計者にとって、振動解析は「自分には手の届かないもの」「仕事には役立たないもの」なのです。実際私も学生のころは、構造設計者は振動解析の技術を持ち、ベテランともなれば皆一度は超高層の設計に携わったことがあるのだろうと思っていました。ですが現実はそうではなく、自ら望み、その世界へ飛び込まなければ決して出会うことのないものだと痛感しました。

ではこの先も、超高層に携わらない構造設計者は振動解析に対して無関心でいいのでしょうか。決してそんなことはありません。構造設計者は構造設計の専門家であり、知らなくていい事柄など一つとして無いのです。今の低中層の計算方法にも振動解析の考えが数多く取り入れられており、将来低中層の建物にも振動解析が義務化されるかもしれません。ですから、構造設計者はもとより、意匠・設備設計者や一般の方々にも、何をやっているかぐらいは知っておいていただけると幸いです。

ここでほんの少しだけ、振動解析の世界をご紹介しましょう。

「F=ma」
という式をご存知でしょうか。これは、「力(慣性力)は質量と加速度の積」というニュートンの第2法則を示した式です。なんだか中学校か高校の物理で習った記憶があります。

低中層建物の構造設計はこの法則に基づいて、地震によって建物にどれだけの加速度aがはたらくかを想定し、どれだけの力Fがかかるかを計算します。電車や車に乗っているとき、急激な加速や減速があると、誰かに押されたような感覚になります。地震が起こった時に、建物にもこれと同じ現象が起こっているのです。

私達にとって一番身近な加速度といえば、重力加速度ですね。これは地球上であれば変わることはありません。地震によって建物にどれだけの力がかかるかは、この重力加速度を基準に考えます。建物にかかる加速度をa、重力加速度をgとすると、建物の自重に対してa/gという割合で力がかかると想定し、このa/gについて震度4程度では0.2や0.3、震度6強程度では1.0を基本としています。そしてこのa/gを震度と呼びます。

この計算方法は、地震で左右どちらか一方から押されたときに、「押された直後のある瞬間」を抜き取って考えているのです。これは低中層の構造計算で最も一般的に用いられ、「静的解析」といいます。ある瞬間なので揺れることはなく、「静か」なのです。

次にこの「F=ma」を少し変化させましょう。

「F-ma=0」
ただ移項させただけのようにみえます。もちろん数学的にはそうなのですが、工学的には重要な意味を持ちます。

地震で押された後のことを考えてみましょう。柱や梁は押されて変形した後、元に戻ろうとします。この力を「復元力」といいます。地震で揺れる度に、建物には慣性力と復元力がかかり、上の式はこの二つの力が動きながら常に釣り合っていることを意味しています。これは振動解析の考え方の基礎となるものであり、これらの計算を総称して「動的解析」といいます。動的解析には時間の概念が加わるので、静的解析より複雑になってしまいます。

この移項した式を「d’Alembert(ダランベール)の原理」といいます。

実際の振動解析では、これらに空気抵抗や摩擦による揺れの減衰を考慮します。復元力も一定とは限りません。そして時々刻々と変化する地面からの加速度に対して、ある時間分ごとに計算を行います。

建物を解析するとき、床の位置にその階の質量を集めた点をつくり、計算が簡単になるように建物を簡略化するようにします。この質量を集めた点を「質点(しってん)」といい、このようなモデルを通称「串団子モデル」と呼びます。見ての通りおだんごのようですね。

解析ではこの質点ひとつひとつについて、どのような力がかかり、どのように動くかを解析します。
さらに建物はこの質点の数だけ揺れのパターンがあり、それらをひとつずつ解析しなければなりません。
20階建てなら20パターン、30階建てなら30パターンあり、それぞれのパターンに対して、全ての質点を解析します。

これをある時間分ごとに計算していくわけですが、一般的に建物の振動解析では、0.01秒や0.001秒ごとに行うことが一般的です。例えば3分間(180秒)建物の揺れを0.001秒ごとに確認したければ、180/0.001=180000回この計算を繰り返すことになります。

非常に大雑把な説明でしたが、振動解析のイメージを掴んでいただけたでしょうか。これだけ膨大な計算を人間が手計算でやろうとすると、一生かかってもできないでしょう。振動解析はコンピュータが発展したからこそ確立した計算方法であり、これからの構造設計には欠かせない技術であることは明白です。そして、構造設計者はさらなる技術発展に寄与し、少しでも被害を軽減させて社会に貢献するという責務を負っているのです。